Какое число называется четным нечетным. Чётные — нечётные числа. Смотреть что такое "Чётные и нечётные числа" в других словарях

Определения

  • Чётное число - целое число, которое делится без остатка на 2: …, −4, −2, 0, 2, 4, 6, 8, …
  • Нечётное число - целое число, которое не делится без остатка на 2: …, −3, −1, 1, 3, 5, 7, 9, …

В соответствии с этим определением нуль является чётным числом.

Если m чётно, то оно представимо в виде , а если нечётно, то в виде , где .

В разных странах существуют связанные с количеством даримых цветов традиции.

В России и странах СНГ чётное количество цветов принято приносить лишь на похороны умершим. Однако, в случаях, когда в букете много цветов (обычно больше ), чётность или нечётность их количества уже не играет никакой роли.

Например, вполне допустимо подарить юной даме букет из 12 или 14 цветов или срезов кустового цветка, если они имеют множество бутонов , у которых они, в принципе, не подсчитываются.
Тем более это относится к б́ольшему количеству цветов (срезов), даримых в других случаях.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Чётные и нечётные числа" в других словарях:

    Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

    Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

    Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

    Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

    Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

    Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

    Слегка избыточное число, или квазисовершенное число избыточное число, сумма собственных делителей которого на единицу больше самого числа. До настоящего времени не было найдено ни одного слегка избыточного числа. Но со времён Пифагора,… … Википедия

    Целые положительные числа, равные сумме всех своих правильных (т. е. меньших этого числа) делителей. Например, числа 6 = 1+2+3 и 28 = 1+2+4+7+14 являются совершенными. Ещё Евклидом (3 в. до н. э.) было указано, что чётные С. ч. можно… …

    Целые (0, 1, 2,...) или полуцелые (1/2, 3/2, 5/2,...) числа, определяющие возможные дискретные значения физических величин, которые характеризуют квантовые системы (атомное ядро, атом, молекулу) и отдельные элементарные частицы.… … Большая советская энциклопедия

Книги

  • Математические лабиринты и ребусы, 20 карточек , Барчан Татьяна Александровна, Самоделко Анна. В наборе: 10 ребусов и 10 математических лабиринтов на темы: - Числовой ряд; - Чётные и нечётные числа; - Состав числа; - Счёт парами; - Упражнения на сложение и вычитание. В комплекте 20…

Четные числа - это те, которые делятся на 2 без остатка (например, 2, 4, 6 и т.п.). Каждое такое число можно записать в виде 2*K, подобрав подходящее целое K (например, 4 = 2 х 2, 6 = 2 х 3, и т.д.).

Нечетные числа - это те, которые при делении на 2 дают в остатке 1 (например, 1, 3, 5 и т.п.). Каждое такое число можно записать в виде 2*K + 1, подобрав подходящее целое K (например, 3 = 2 х 1 + 1, 5 = 2 х 2 + 1, и т.д.).

Сложение и вычитание:

Чётное ± Чётное = Чётное

Чётное ± Нечётное = Нечётное

Нечётное ± Чётное = Нечётное

Нечётное ± Нечётное = Чётное

Умножение:

Чётное × Чётное = Чётное

Чётное × Нечётное = Чётное

Нечётное × Нечётное = Нечётное

Рассмотрим также свойства четных и нечетных чисел, важные для решения задач.

1. Если хотя бы один множитель произведения двух (или нескольких) чисел четен, то и все произведение четно.

2. Если каждый множитель произведения двух (или нескольких) чисел нечетен, то и все произведение нечетно.

3. Сумма любого количества четных чисел - число четное.

4. Сумма четного и нечетного чисел - число нечетное.

5. Сумма любого количества нечетных чисел - число четное, если число слагаемых четно, и нечетное, если число слагаемых нечетно.

В справедливости этих свойств мы убедимся при решении задач.

Задача 1. В магазин "Все для собак и кошек" привезли новые игрушки. Могут ли десять игрушек ценой в 3, 5 или 7 рублей стоить в сумме 53 рубля?

Решение. Сумма четного количества нечетных чисел четна. У нас есть 10 чисел (цена одной игрушки), все они нечетные, значит их сумма должна быть четна. Но 53 - число нечетное, поэтому получить его в виде суммы 10 нечетных чисел нельзя.

Задача 2. Хозяйка купила общую тетрадь объемом 96 листов и пронумеровала все ее страницы по порядку числами от 1 до 192. Щенок Антошка выгрыз из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. Могло ли у него получиться 1990?

Решение: На каждом листе сумма номеров страниц нечетна, а сумма 25 нечетных чисел – нечетна.

Задача 3. У Антоши было 5 плиток шоколада. Может ли Антоша, поделив каждую плитку на 9, 15 или 25 кусочков, получить всего 100 кусков шоколада?

Ответ. Нет, т.к. если сложить 5 нечетных чисел, получим нечетный результат. А 100 четно.

Задача 4 . На плоскости расположено 9 шестеренок, соединенных по цепочке (первая со второй, вторая с третьей... 9-я с первой). Могут ли они вращаться одновременно?

Решение: Нет, не могут. Если бы они могли вращаться, то в замкнутой цепочке чередовалось бы два вида шестеренок: вращающиеся по часовой стрелке и против часовой стрелки (для решения задачи не имеет никакого значения, в каком именно направлении вращается первая шестеренка!) Тогда всего должно быть четное число шестеренок, а их 9 штук?! ч.и.т.д. (знак "?!" обозначает получение противоречия)

Задача 5 . Четна или нечетна сумма всех натуральных чисел от 1 до 17?

Из 17 натуральных чисел 8 четных:

2,4,6,8,10,12,14,16, остальные 9 нечетны. Сумма всех этих четных чисел четна (свойство 3), сумма нечетных нечетна (свойство 5). Тогда сумма всех 17 чисел нечетна как сумма четного и нечетного чисел (свойство 4).

Ответ: нечетна.

Задача 6 . В пятиэтажном доме с четырьмя подъездами подсчитали число жителей на каждом этаже и, кроме того, в каждом подъезде. Могут ли все полученные 9 чисел быть нечетными?

Обозначим число жителей на этажах соответственно через a1 a2 a3 а4, a5, a число жителей в подъездах соответственно через b1 b2 b3 b4. Тогда общее число жителей дома можно подсчитать двумя способами - по этажам и по подъездам:

а1 + а2 + а3 + а4 + а5 = b1, + b2 + b3 + b4.

Если бы все эти 9 чисел были нечетными, то сумма в левой части записанного равенства была бы нечетной, а сумма в правой части - четной. Следовательно, это невозможно.

Ответ: не могут.

Задача 7 . Четно или нечетно произведение (7а + b - 2с + 1)(3а – 5b + 4с + 10), где числа a, b, с - целые?

Решение. Можно перебирать случаи, связанные с четностью или нечетностью чисел а, b и с (8 случаев!), но проще поступить иначе. Сложим множители:

(7а + b - 2с + 1) + (За -5 b + 4с+ 10) = 10а - 4 b + 2с + 11.

Так как полученная сумма нечетна, то один из множителей данного

произведения четен, а другой нечетен. Следовательно, само произведение четно.

Ответ: четно.

Задача 8 . Щенок Антошка нацарапал на доске: 1*2*3*4*5*6*7*8*9 = 33, причем вместо каждой звездочки он поставил либо плюс, либо минус. Филя переправил несколько знаков на противоположные и в результате вместо числа 33 получил число 32. Верно ли, что по меньшей мере один из щенков ошибся при подсчете?

Если все звездочки заменить на плюсы, то полученная сумма будет нечетной, а, следовательно, и данная сумма - тоже. Поэтому по меньшей мере ошибся Филя.

Ответ: верно.

А теперь основные идеи четности: (!) Все эти идеи можно на олимпиаде вставлять в текст решения задачи.

1. Если в некоторой замкнутой цепочке чередуются объекты двух видов, то их четное число (и каждого вида поровну).

2. Если в некоторой цепочке чередуются объекты двух видов, а начало и конец цепочки разных видов, то в ней четное число объектов, если начало и конец одного вида, то нечетное число. (четное число объектов соответствует нечетному числу переходов между ними и наоборот!)

2". Если у объекта чередуются два возможных состояния, а исходное и конечное состояния различны, то периодов пребывания объекта в том или ином состоянии - четное число, если исходное и конечное состояния совпадают - то нечетное.

3. Обратно: по четности длины чередующийся цепочке можно узнать, одного или разных видов ее начало и конец.

3". Обратно: по числу периодов пребывания объекта в одном из двух возможных чередующихся состояний можно узнать, совпадает ли начальное состояние с конечным.

4. Если любые предметы можно разбить на пары, то их количество четно.

5. Если нечетное число предметов почему-то удалось разбить на пары, то какой-то из них будет парой к самому себе, причем такой предмет может быть не один (но их всегда нечетное число).

Все натуральные числа с точки зрения делимости на 2 раз­биваются на два множества: множество четных чисел и множество нечетных чисел .

Четные числа делятся нацело на 2, а нечетные при делении на 2 дают остаток 1. 0 число четное.

При решении задач, в которых используются свойство четность важно помнить и применять следующие правила:

  • Сумма и разность двух нечетных чисел является четным числом
  • Сумма и разность двух четных чисел является четным числом.
  • Сумма и разность двух чисел, из которых одно четное , а другое нечетное , является нечетным числом.
  • Произведение двух нечетных чисел является нечетным числом .
  • Произведение двух чисел, из которых одно четное , явля­ется четным числом.

Разберем несколько примеров.

Задача 1.

Можно ли разменять 25 рублей при помощи десяти купюр достоинством 1, 3 и 5 рублей?

Решение.

Нельзя. И вовсе не потому, что таких купюр не существует. Сумма четного количества нечетных слагаемых не может быть нечетным числом.

Ответ: Нельзя.

Задача 2.

В наборе было 23 гири массой 1 кг, 2 кг, 3 кг, … 23 кг. Можно ли их разложить на две равные по массе части, если гирю в 21 кг потеряли?

Решение.

Масса всех гирь S = (1 + 23) + (2 + 22) + … + (11 + 13) + 12 – число четное.

Следовательно, (S – 21) на две равные по весу части не разложить, поскольку это число нечётное.

Ответ. 23 гири с данной массой на две равные части не разложить.

Задача 3.

Кузнечик прыгает по прямой в разные стороны: первый прыжок на 1 см, второй – на 2 см, третий – на 3 см и так далее. Может ли он после двадцать пятого прыжка вернуться в ту точку, с которой начал?

Решение.

Пусть кузнечик прыгает по числовой прямой в разные стороны и начинает из точки с координатой 0. После 25 прыжка он окажется в точке с нечетной координатой (среди чисел от 1 до 25 нечетных нечетное число). Так как 0 – число четное, то он не может вернуться в исходное положение.

Ответ. После 25 прыжка кузнечик не может вернуться в ту точку, с которой начал.

Задача 4.

В древней рукописи приведено описание города, расположенного на 8 островах. Острова соединены между собой и с материком мостами. На материк выходят 5 мостов; на 4 островах берут начало по 4 моста, на 3 островах берут начало по 3 моста и на один остров можно пройти только по одному мосту. Может ли быть такое расположение мостов?

Решение.

Найдем число концов у всех мостов:

5 + 4 · 4 + 3 · 3 + 1 = 31.

31 является числом нечетным.

Так как число концов у всех мостов должно быть четным, то такого расположения мостов быть не может.

Ответ. Не может.

Задача 5.

На столе стоит 6 стаканов. Из них 5 стаканов стоят пра­вильно, а один перевернут донышком вверх. Разре­шается переворачивать любые 2 стакана за один ход. Можно ли все стаканы поставить правильно за конечное число ходов?

Решение.

Для решения этой задачи попробуем сформулировать условие на языке чисел. Для этого событие «стакан стоит правильно» пронумеруем 1, а «стакан стоит не правильно» 0. Тогда вместо рисунка со стаканами возникнет последовательность из пяти единичек и одного нуля. Сумма всех чисел последовательности равна нечетному числу 5. При переворачивании стакана в нашей последовательности 0 будет меняться на 1 и наоборот – 1 на 0. Наша цель – получить ряд из одних 1. Их должно стать 6 и сумма должна стать также равной 6. Это число четное.

Но что происходит с суммой при переворачивании 2 стаканов одновременно? Либо две 1 заменяются 0, либо два 0 – единицами, либо одна 1 на 0 и один 0 на 1. А что же происходит с суммой? В первом и втором случаях она изменяется на 2, а в третьем – не меняется вообще. А это значит, что она никогда не станет четной и никогда не сможет стать равной 6, как, между прочим, ни 2 и не 4.

Ответ. Невозможно.

Задача 6.

Петя купил общую тетрадь объемом 96 листов и про­нумеровал все ее страницы по порядку числами от 1 до 192. Вася вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. Могло ли у него получиться число 2006?

Решение.

Обратим внимание на сумму номеров страниц на одном листе. Она нечетна, поскольку одной странице соответствует нечетное число, а второй странице листа чётное. Но листов 25. Тогда сумма всех номеров вырванных страниц нечетна. А что получил Вася? Следовательно, он не прав!

Ответ. Не могло.

Задача 7.

Каждая из 10 цифр написана на карточке. Таких комплектов изготовили 2. Получили 20 карточек, на каждой из которых написана цифра 0 или 1 или 2 ... или 9 и карточек с одинаковыми цифрами по 2. Доказать, что нельзя разложить эти карточки в один ряд так, чтобы между одинаковыми карточками с цифрой k лежало ровноk карточек. (k = 0, 1, 2, …, 9).

Решение.

Допустим, что разложить карточки указанным способом удалось. Тогда их легко пронумеровать по порядку числами от 1 до 20. Предположим, что каждая первая, встретившаяся в ряду, карточка с цифрой k имеет номер а k а последняя с той же цифрой k номер b k . Тогда b k а k = k + 1. Тогда

∑(b k а k) = ∑b k ∑а k = (b 0 – а 0) + (b 1 – а 1) + (b 2 а 2) + (b 3 а 3) + … + (b 9 а 9) = 1 + 2 + 3 + 4 + … + 10 = 55.

Но ∑b k + ∑а k = 1 + 2 + 3 + … + 20 = 210. (Сумма всех номеров карточек.).

Получили ∑b k ∑а k = 55 и ∑b k + ∑а k = 210. Сложив эти равенства, получаем 2∑b k = 265, что невозможно. (Во всех случаях под знаком ∑ понимается суммирование по k от 0 до 9.) Справа число четное, а слева – нечетное. Это противоречие доказывает, что наше допущение о возможности разложить карточки указанным способом ошибочно.

Ответ. Утверждение доказано.

Если вы хорошо усвоили материал данной статьи, то решение следующих задач у вас не должно вызывать особых затруднений. В случае затруднений, попробуйте найти среди решенных задачи родственного содержания.

  1. Вдоль забора растет 8 кустов малины. Число ягод на соседних кустах отличается на единицу. Может ли на всех кустах вместе быть 225 ягод?
  2. В Королевстве 1 001 город. Король приказал проло­жить между городами дороги так, чтобы из каждого города выходило 7 дорог. Смогут ли подданные спра­виться с приказом короля?

Желаю успехов!

Остались вопросы? Не знаете, как применять свойства чётности и нечётности чисел?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

· Четные числа - это те, которые делятся на 2 без остатка (например, 2, 4, 6 и т.п.). Каждое такое число можно записать в виде 2K, подобрав подходящее целое K (например, 4 = 2 х 2, 6 = 2 х 3, и т.д.).

· Нечетные числа - это те, которые при делении на 2 дают в остатке 1 (например, 1, 3, 5 и т.п.). Каждое такое число можно записать в виде 2K + 1, подобрав подходящее целое K (например, 3 = 2 х 1 + 1, 5 = 2 х 2 + 1, и т.д.).

  • Сложение и вычитание:
    • Ч ётное ± Ч ётное = Ч ётное
    • Ч ётное ± Н ечётное = Н ечётное
    • Н ечётное ± Ч ётное = Н ечётное
    • Н ечётное ± Н ечётное = Ч ётное
  • Умножение:
    • Ч ётное × Ч ётное = Ч ётное
    • Ч ётное × Н ечётное = Ч ётное
    • Н ечётное × Н ечётное = Н ечётное
  • Деление:
    • Ч ётное / Ч ётное - однозначно судить о чётности результата невозможно (если результат целое число , то оно может быть как чётным, так и нечётным)
    • Ч ётное / Н ечётное -­-- если результат целое число , то оно Ч ётное
    • Н ечётное / Ч ётное - результат не может быть целым числом, а соответственно обладать атрибутами чётности
    • Н ечётное / Н ечётное ---если результат целое число , то оно Н ечётное

Сумма любого числа четных чисел – четно.

Сумма нечетного числа нечетных чисел – нечетно.

Сумма четного числа нечетных чисел – четно.

Разность двух чисел имеет ту же четность, что и их сумма .
(напр. 2+3=5 и 2-3=-1 оба нечетные)

Алгебраическая (со знаками + или -) сумма целых чисел имеет ту же четность, что и их сумма .
(напр. 2-7+(-4)-(-3)=-6 и 2+7+(-4)+(-3)=2 оба четны)


Идея четности имеет много разных применений. Самые простые из них:

1. Если в некоторой замкнутой цепочке чередуются объекты двух видов, то их четное число (и каждого вида поровну).

2. Если в некоторой цепочке чередуются объекты двух видов, а начало и конец цепочки разных видов, то в ней четное число объектов, если начало и конец одного вида, то нечетное число. (четное число объектов соответствует нечетному числу переходов между ними и наоборот !!! )

2". Если у объекта чередуются два возможных состояния, а исходное и конечное состояния различны , то периодов пребывания объекта в том или ином состоянии - четное число, если исходное и конечное состояния совпадают - то нечетное . (переформулировка п.2)

3. Обратно: по четности длины чередующийся цепочке можно узнать, одного или разных видов ее начало и конец.

3". Обратно: по числу периодов пребывания объекта в одном из двух возможных чередующихся состояний можно узнать, совпадает ли начальное состояние с конечным. (переформулировка п.3)

4. Если предметы можно разбить на пары, то их количество четно.

5. Если нечетное число предметов почему-то удалось разбить на пары, то какой-то из них будет парой к самому себе, причем такой предмет может быть не один (но их всегда нечетное число).

(!) Все эти соображения можно на олимпиаде вставлять в текст решения задачи, как очевидные утверждения.

Примеры:

Задача 1. На плоскости расположено 9 шестеренок, соединенных по цепочке (первая со второй, вторая с третьей... 9-я с первой). Могут ли они вращаться одновременно?

Решение: Нет, не могут. Если бы они могли вращаться, то в замкнутой цепочке чередовалось бы два вида шестеренок: вращающиеся по часовой стрелке и против часовой стрелки (для решения задачи не имеет никакого значения, в каком именно направлении вращается первая шестеренка ! ) Тогда всего должно быть четное число шестеренок, а их 9 штук?! ч.и.т.д. (знак "?!" обозначает получение противоречия)

Задача 2. В ряд выписаны числа от 1 до 10. Можно ли расставить между ними знаки + и -, чтобы получилось выражение, равное нулю?
Решение: Нет, нельзя. Четность полученного выражения всегда будет совпадать с четностью суммы 1+2+...+10=55, т.е. сумма всегда будет нечетной . А 0 - четное число?! ч.т.д.

Соображения четности (нечетности) часто используются при решении математических задач (и элементарных, и весьма "продвинутых"). В данной статье рассматриваются подходы к решению подобных задач.

Мы начнем с простейших примеров, а в заключительной части рассмотрим несколько "олимпиадных" заданий, в решении которых нам помогут соображения четности.

Четные и нечетные числа. Начальные сведения

В данной статье мы будем рассматривать главным образом натуральные или целые числа. Напомню, что число называется четным, если оно делится нацело на 2. Иначе говоря, любое четное число n можно представить в виде n = 2k, где k - целое число, а любое нечетное - в виде n = 2k + 1 (или n = 2k - 1). Ноль, естественно, будем считать четным числом.

Пример 1 . Числа 34 и 171 представьте в виде 2k или 2k + 1, где k-целое число.

34 = 2 17 (34 - четное число); 171 = 2 85 + 1 (171 - нечетное число).

Задание 1 . Числа 68, 133, -2246 и -8977 представьте в виде 2k или 2k+1, где k-целое число.

Задание 2 . Представьте число 18 в виде: а) суммы двух четных чисел, б) суммы двух нечетных чисел. Можно ли получить 18 при сложении четного и нечетного чисел?

Задание 3 . Представьте число 24 в виде: а) произведения двух четных чисел, б) произведения четного и нечетного чисел. Можно ли получить 24 при умножении двух нечетных чисел?

Сумма, произведение, частное четных (нечетных) чисел

Утверждение 1 . Сумма двух четных чисел - четное число.

Доказательство. Пусть числа m и n являются четными. Докажем, что число r = m + n также четно. m=2k, n=2p, где k и p - целые числа. Тогда r = m + n = 2k + 2p = 2(k + p) = 2s. Если числа k и p являются целыми, то их сумма s - тоже целое число. Мы доказали, что число r может быть представлено в виде произведения двойки и целого числа. Доказательство завершено.

Утверждение 2 . Сумма двух нечетных чисел - четное число. Докажите самостоятельно.

Утверждение 3 . Сумма четного и нечетного чисел - нечетное число. Докажите самостоятельно.

Утверждение 4 . Произведение двух нечетных чисел - нечетное число.

Доказательство. Пусть числа m и n являются нечетными. Докажем, что число r = m n также нечетно.
m = 2k + 1, n = 2p + 1, где k и p - целые числа.
Тогда r = m n = (2k+1) (2p+1) = 4kp + 2k + 2p + 1 = 2(2kp + k + p) + 1 = 2s + 1.

Если числа k и p являются целыми, то число s = 2kp + k + p - тоже целое число.
Мы доказали, что число r может быть представлено в виде r = 2s + 1, следовательно, является нечетным. Ч. т. д.

Утверждение 5 . Произведение двух четных чисел - четное число. Докажите самостоятельно.

Утверждение 6 . Произведение четного и нечетного чисел - четное число. Докажите самостоятельно.

А если мы поделим четное число на четное (не равное нулю)? Что получим: чет или нечет? Естественно, однозначного ответа дать нельзя. Например, при делении 12 на 4 мы получаем нечетный результат, а при делении 32 на 4 - четный.


Если вы уже заскучали, переходите ко 2-й части статьи . Потом всегда сможете вернуться. Если же все эти теоретические построения вас не слишком утомили, давайте продолжим.


А почему, собственно, мы рассматриваем только два числа. Давайте мыслить шире!

Утверждение 7 . Сумма любого количества четных чисел четна.

Доказательство. Пусть числа M 1 , M 2 , ..., M N являются четными, тогда их можно представить в виде 2K 1 , 2K 2 , ... , 2K N , где K 1 , K 2 , ..., K N - целые числа.

Тогда: M 1 + M 2 + ... + M N = 2K 1 + 2K 2 + ... + 2K N = 2(K 1 + K 2 + ... + K N) = 2S, где S-целое число. Четность доказана.

Утверждение 8 . Сумма четного количества нечетных чисел четна. Сумма нечетного количества нечетных чисел нечетна. Докажите самостоятельно.

Утверждение 9 . Произведение может быть нечетным только в том случае, если все сомножители нечетны. Докажите самостоятельно.

Так, сумма 2+4+6+...+1022+1024 четна, поскольку все слагаемые четны. Сумма 1+3+5+7+9 нечетна, т. к. содержит 5 нечетных слагаемых. Произведение 2*3*4*...*1001*1002 четно уже хотя бы по той причине, что первый сомножитель является четным.

Задание 4 . Четными или нечетными будут следующие выражения: а) 2+12+22+...+1002+1012+1022, б) 1+11+111+...+111111+1111111, в) 3*13*23*...*10003*10013*10023, г) 2*3*4*...*12357891 ?

Задание 5 . Докажите, что произведение всех простых чисел, не превосходящих 1000000, четно. Докажите, что произведение любого количества простых чисел, каждое из которых больше 100, нечетно. Напомню, что натуральное число называется простым, если делится только на себя и на 1.

И вновь о сумме и произведении

Пример 2 . Юный математик Петя сложил сумму двух целых чисел и их произведение. Он утверждает, что у него получилось число 56792. Возможно ли такое, если известно, что хотя бы одно из исходных чисел нечетно?

Решение. Обозначим исходные числа A и B. Очевидно, возможно 4 варианта:

  • A и В - четные числа (но этот случай в задаче не рассматривается),
  • A и B - нечетные числа,
  • A четно, а B нечетно,
  • A нечетно, B четно.

В принципе, два последних случая можно было бы безболезненно объединить, но для нас это сейчас несущественно. В предыдущем пункте мы выяснили все, что касается четности суммы и произведения. А теперь давайте составим таблицу. В первых двух колонках укажем четность чисел А и В, в 3-й колонке - четность суммы, в 4-й четность произведения, в 5-й - четность итогового числа.

A B A+B AB (A+B) + АВ
Ч Ч Ч Ч Ч
Н Н Ч Н Н
Ч Н Н Ч Н
Н Ч Н Ч Н

Во всех случаях (кроме первого) получаем нечетный результат!

Между прочим, наш юный друг Петя утверждает, что получил четное число. Мы доказали, что это невозможно. Петя ошибся.

Задание 6 . Юный математик Маша умножила произведение двух целых чисел на их сумму. Она утверждает, что получилось число 89999719. Права ли Маша?

Задание 7 . Юный математик Петя утверждает, что при сложении двух целых чисел получил 927, а при умножении - 6321. Возможно ли такое? Объясните ваш ответ.


Сознаю, что первая часть статьи может показаться читателю довольно утомительной и однообразной. К сожалению, обойтись без этих "скучных" базовых понятий нельзя. Обещаю, что дальше будет гораздо интереснее.